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Ab initio molecular dynamics simulations of dense boron plasmas up to the semiclassical
Thomas-Fermi regime
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We build an “all-electron” norm-conserving pseudopotential for boron which extends the use of ab initio
molecular dynamics simulations up to 50 times the normal density py. This allows us to perform ab initio
simulations of dense plasmas from the regime where quantum mechanical effects are important to the regime
where semiclassical simulations based on the Thomas-Fermi approach are, by default, the only simulation
method currently available. This study first allows one to establish, for the case of boron, the density regime
from which the semiclassical Thomas-Fermi approach is legitimate and sufficient. It further brings forward
various issues pertaining to the construction of pseudopotentials aimed at high-pressure studies.
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INTRODUCTION

In ab initio molecular dynamics (MD) simulations [1], the
electrons receive a full quantum mechanical treatment within
finite-temperature density functional theory (DFT) while the
ions are propagated classically on the resulting potential en-
ergy surface. The method has been extensively used in the
past ten years to calculate the physical properties of dense
plasmas [2]. When combined with linear response theory,
this approach has been so far rather successful at reproducing
the dynamical, electrical, and optical properties of various
systems including metals, semiconductors, and molecular
fluids in the warm dense matter regime [3—12]. In this re-
gime, reached experimentally by shock compression in the
Mbar range [13—-15], laser heating of solid targets [16—19], or
exploding wires [20-23], the matter is partially dissociated,
ionized, and degenerate. This brings a rather challenging me-
dium to model theoretically where many-body effects are
important and perturbative approaches fail. The parameter-
free nature of the ab initio MD approach is progressively
making it the method of choice to study matter under these
extreme conditions and to calibrate physical models such as
the average atom [24-26], the chemical model [27,28], or
even opacity calculations [29] at conditions not yet acces-
sible experimentally.

The method is, however, computationally expensive and
its application has been so far limited to low temperatures
(T<10eV) and intermediate density situations (p<5p).
Unfortunately, this temperature-density regime is still far
from the regime where semiclassical approaches are assumed
to be valid [30]. As such, there is currently a need to extend
the range of applicability of ab initio molecular dynamics
simulations in both temperature and density. This would first
allow one to establish the range of validity of semiclassical
methods such as the Thomas-Fermi (TF) approach and, sec-
ond, to fill the gap between the latter and current ab initio
simulation results. We further note that the ab initio approach
provides, in addition to the dynamical properties, consistent
electrical and optical properties from the same simulations.
To extend the range of applicability of the method would
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also provide a useful benchmark as an additional layer of
approximations, such as the Ziman formulation [31], is gen-
erally used to calculate these properties in the semiclassical
regime.

The limitation of temperature is directly related to the
number of bands that can be practically included into the
calculation while the density range is limited by the cutoff
and number of active electrons used in the pseudopotential
(PSP). The latter is generally built for calculations to be per-
formed around normal densities where only the outermost
electronic shells are treated as active electrons. The inner-
shell electrons can usually be approximated as atomic ones at
normal densities and are generally treated within the frozen-
core approximation. In addition, the cutoff radius is generally
large in order to keep the plane-wave basis set as small as
possible.

As a first step aimed at overcoming these limitations and
reaching the regime where semiclassical approaches are
valid, we relaxed the last two approximations and build a
Troullier-Martins norm-conserving pseudopotential for bo-
ron where all the electrons are treated as active. We choose
boron for its electronic structure and also because all the
electrons can be treated as active with current computational
capabilities. With two s and one p orbitals, boron exemplifies
the issues encountered in building semilocal all-electron
norm-conserving pseudopotentials for high-pressure studies.

Following previous work [32], we construct our all-
electron pseudopotential by using the ls orbital as reference
state for the /=0 component. For boron, we further find that
it is necessary to include components corresponding to
empty atomic orbitals to ensure transferability at the highest
pressures. We also suggest that the semiclassical Thomas-
Fermi atomic model could be used to ensure the pseudopo-
tential transferability at high pressure. With this pseudopo-
tential, we perform ab initio molecular dynamics simulations
for boron up to 50 times the normal density. These ab initio
simulations of dense plasmas span from the regime where
quantum mechanical effects are important to the regime
where semiclassical methods such as the Thomas-Fermi
approach are valid and justified.
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PSEUDOPOTENTIAL CALCULATION

To simulate dense boron plasmas up to 50 times the nor-
mal density, we build a Troullier-Martins (TM) norm-
conserving pseudopotential with a small cutoff radius and
where all the electrons are active. These two conditions must
be satisfied to enable accurate ab initio simulations at densi-
ties where the frozen-core approximation cannot be used and
to prevent the “pseudoization” spheres from overlapping. We
used the well-known FHI98PP pseudopotential generator de-
veloped by Fuchs and Sheffler [33]. This package is easily
accessible and allows one to generate norm-conserving
pseudopotentials for most elements throughout the periodic
table and with a large array of DFT functionals.

In this scheme, the norm-conserving pseudopotential is
first written in terms of an /-dependent and semilocal opera-
tor [33,34]

Lyax m=1
‘/}PS = Vf(fc(r) + 2 E |Ylm>[V?S(r) - Vfosc(r)]<ylm| . (1)
=0 m=-1

In Eq. (1), V?>.(r) is the local pseudopotential and V/*(r)

loc
— V¥ (r) is the /-dependent component which is expected to
vanish for [>1,,,,. In the present study, we choose [;,.=1,,,.
for all pseudopotentials constructed except when explicitly
stated.

A first difficulty encountered in constructing an all-
electron norm-conserving pseudopotential for boron using
this semilocal formulation comes from the two s orbitals.
This semilocal formulation, in effect, restricts the pseudopo-
tential to one projector or component per angular momen-
tum. We further recall that, in this scheme, the pseudo-wave-
functions W7 (r)=[u,€”*;r)/r]Y,,(Q,) do not contain any
radial nodes. With this requirement, the resulting pseudo-
wave-functions are necessarily of type 1s,2p,3d,.... The
unscreened pseudopotential components are obtained by

solving and inverting the Schrodinger equation

14> 1(I+1)
-5527 2
2dr 2r

+ Vg)x,s(‘r(r) _ e-;” ufs(el;}") =0. (2)

A fully separable ionic pseudopotential is then constructed
using the Kleinman-Bylander form [35]. As pointed out by
Blochl [36] and Vanderbilt [37], a separable pseudopotential
can be directly constructed without using the semilocal form
(1). In this case, the pseudopotential is fully nonlocal and
one can then have several reference levels per angular mo-
mentum [38].

To construct the boron all-electron pseudopotential using
the procedure summarized above, we use the all-electron 1s
state as the reference state for the /=0 component [32]. In
this scheme, the 2s eigenstate is now an excited state for the
pseudo-Hamiltonian. We recall that for a standard boron
pseudopotential with three active electrons and where the s
orbital is treated in the frozen-core approximation, the 2s
all-electron orbital is used as a reference state and agrees
beyond the cutoff radius with the 1s pseudo-orbital.

To assess the validity of this approximation for boron and
the accuracy of the resulting pseudopotential, we first com-
pare the all-electron energies and pseudoenergies obtained
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TABLE 1. Boron atomic energies.

3e pseudopotential Se pseudopotential

All electron 2522p! 15%2522p!
Ei, (eV) —178.6714086 -178.6728144
E,, (eV)  -9.3837355 -9.3837937 -9.2036065
Ey, (eV) -3.7152605 -3.7152674 -3.7146330

with a cutoff value of r.=0.5a5 and calculated in the Pw92
[39] formulation of the local density approximation (LDA).
Table I shows that the energy of the 2s orbital is still repro-
duced within 2% in this scheme. We also show, in Table I,
the result obtained with a pseudopotential using three active
electrons and a cutoff radius r.=1.7ag. Furthermore, we find
that the logarithmic derivatives D,(e, %), defined as

D/(er?ias) = 4 In u/(e,r) , (3)
dr y=pdiag

are in good agreement over the energy range corresponding
to the 1s and 2s orbitals and for energies up to 2 hartrees. For
both pseudopotentials, we choose [,,,,=3.

We show, in Fig. 1, the calculation of the fcc equilibrium
volume with the 3e and 5e pseudopotentials. At normal den-
sity, boron has a rather complex crystallographic structure.
For convenience, the transferability test is performed on the
fcc structure as its properties are well documented in the
literature. The calculations are performed using the plane-
wave electronic structure code ABINIT [40]. The calculations
are done using an fcc elementary cell with 63 k points. The
plane-wave cutoff is set to 50 and 180 hartrees for, respec-
tively, the 3e and S5e pseudopotentials. This increase in
plane-wave cutoff, and, consequently, in the resulting calcu-
lation time, is a direct consequence of the reduction in cutoff
radius from 1.7ap to 0.5a. We see, in Fig. 1, that the equi-
librium volume is slightly shifted to higher values when the
1s electrons are included in the pseudopotential. This value
is, however, in good agreement with previous calculations
performed by Mailhiot er al. [41]. They obtained V,
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FIG. 1. (Color online) Energy variation around the equilibrium
volume calculated with the 3e and 5Se pseudopotentials. The arrow
indicates the equilibrium volume obtained by Maillhot ef al. [41]
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FIG. 2. (Color online) Variation of pressure and energy as a
function of density for fcc boron.

=38.12a; with a norm-conserving pseudopotential calculated
using the Ceperley-Alder LDA functional.

To further test the transferability at very high pressures,
we show, in Fig. 2, the pressure and energy variations as a
function of densities and, as before, for an fcc structure. Fig-
ure 2 shows the calculations performed with the two pseudo-
potentials described above (r.=1.7ag, l,,,,=3 and r,=0.5ap,
Lnax=3). We also show calculations performed with a 3e
pseudopotential which contains only two [/ components
(1,,ax=1) and where we used [;,.=0. We also performed cal-
culations with a pseudopotential where a nonlinear core cor-
rection is introduced beyond a radius r,;.=0.75ap in the 3e
pseudopotential described in the previous section (with 1,,,,,
=3).

Around normal densities, these various pseudopotentials
agree and give rather similar equilibrium volumes. As the
density increases to 100p,, we see, in Fig. 3(a), that the vari-
ous pressure predictions deviate substantially. The 3e
pseudopotential gives slightly higher pressures around
50 g/cm?® when nonlinear core corrections are included. We
interpret this result as the manifestation of the hybridation of
the 1s orbital at these densities and the need to treat the s
electrons as active electrons. In agreement with this interpre-
tation, we find that the 5e pseudopotential where the 1s elec-
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FIG. 3. (Color online) Variation of pressure as a function of
density along the 1- and 4-eV isotherms.
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trons are treated as active progressively gives higher pres-
sures beyond this density.

It is also interesting to note that the pseudopotential which
only includes components corresponding to occupied atomic
orbitals, with /,,.=1, rapidly diverges as the density in-
creases. While the effect is the most spectacular when the
calculations are performed with and without a d component,
we find it necessary to include the d and f components to
achieve the best description over the whole density range.
While we used /;,.=0 in this case, we further point out that a
similar result is obtained when the p component is used as
the local one.

Using Eq. (1), we see that this result implies that the short
part of the d and f components cannot be approximated by
either the s or p component at high densities. We recall that
Eq. (1) implies, in this case, that V¥*(r)=V.q,(r) for I
>1,..c In the present situation, these components correspond
to empty atomic orbitals. This result suggests that it is nec-
essary to include ! components higher than the occupied
atomic ones to obtain converged results at high densities. We
believe that this result is rather general and is not limited to
norm-conserving pseudopotentials, but will be also encoun-
tered with ultrasoft [37] or projected augmented wave (PAW)
pseudopotentials [37,42].

To validate the Se pseudopotentials at the highest pres-
sures, we finally compare our calculations with the results of
a TF average atom model [43]. In this semiclassical model,
widely used in the plasmas community, the medium is ap-
proximated by a neutral pseudoatom. The finite-temperature
Thomas-Fermi approximation, where the kinetic contribution
is expressed as an explicit functional of the density, is sub-
sequently used to obtained the electronic ground state at a
given density and temperature [30]. In the calculations
shown here, we further use the Perrot temperature-dependent
functional [44]. We also note that for the low-temperature
situation investigated here, the introduction of a local ap-
proximation for exchange using such a functional corre-
sponds, in effect, to the Thomas-Fermi-Dirac (TFD) approxi-
mation [45,46] and will be referred as such in the following.

The Thomas-Fermi approximation is the predecessor to
present-day DFT calculations. While it is not reliable for
electronic structure calculations at normal conditions, this
limit must be recovered at high densities where the system
becomes strongly degenerated and the electronic density
tends to a free electron gas. Figure 2 shows that this is indeed
the case for the ab initio calculations using the Se pseudopo-
tentials and for densities higher than about 10 times the nor-
mal density (i.e., p>50 g/cm?). Figure 2 also shows that
this comparison is improved by including exchange into the
calculation. In the latter case, the pressures and energies ob-
tained are in near perfect agreement with the calculations
using the Se pseudopotential at the highest densities.

As the density decreases, the two models diverge as quan-
tum effects and the underlying ionic structure become impor-
tant. This is best seen in Fig. 2(b) where we show the varia-
tion of energy as a function of density. For all the ab initio
calculations shown in Fig. 2(b), we used the energy obtained
at the lowest density as the reference energy. The TF and
TFD results are normalized to the 5e pseudopotential calcu-
lation at the highest density. We see that the TF and ab initio
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calculations using the Se pseudopotential exhibit a signifi-
cantly different slope with respect to the energy variation.
This, in turn, reflects directly onto different pressure varia-
tions as a function of density. We further point out that the
Thomas-Fermi calculations overestimate the ab initio results
by more than a factor of 2 at the lowest densities.

The good agreement between the result obtained with the
Se pseudopotential and the Thomas-Fermi-Dirac model at
the highest densities demonstrates, in our view, that the
pseudopotential built is accurate for high-pressure calcula-
tions. We further suggest that a comparison with a Thomas-
Fermi atomic calculation could be used as a generic test to
assess the transferability of pseudopotentials at high pres-
sures. Having validated a pseudopotential where all the elec-
trons are treated as valence electrons, we now turn to the
molecular dynamics simulation results.

BORON SIMULATION RESULTS

We show, in Fig. 3, the pressure variation along the 1- and
4-eV isotherms as obtained by performing molecular dynam-
ics simulations using the S5e pseudopotentials described
above. The ab initio molecular dynamics simulations are per-
formed using the recently developed version of the ABINIT
structure code which takes full advantage of the paralleliza-
tion over both the number of bands and the number of plane
waves [47].

We recall that the Se pseudopotential developed above
requires a plane-wave cutoff of 180 hartrees to converge the
various quantities of interest. While this is rather costly, even
for ab initio simulations, we also note that the simulation
time decreases as the density increases and fewer plane
waves are needed in the calculations. In effect, the increase
in computational time resulting from the small cutoff radius
needed for high-pressure studies is mostly compensated for
by the reduction in the number of plane waves. The addi-
tional computational cost comes directly from the increase in
the number of active electrons and the number of bands used
in the calculation, respectively 200 and 300, at, respectively,
T=1 and 4 eV.

The ab initio simulations presented here are performed at
the y point and using 54 atoms in the simulation cell. A time
step varying between 1 and 0.1 fs was used. We compare our
results with simulations using the 3e pseudopotential de-
scribed above and the results obtained with TFD molecular
dynamics (TFMD) simulations. These simulations include
exchange using the Perrot functional as described above. In
this approach, the ions are also propagated in time, but in this
case, the forces are calculated from the electronic density
obtained using the Thomas-Fermi-Dirac approximation.
These simulations are performed using 32 atoms in the simu-
lations cell and a time step of 1 fs. Further details of this
approach can be found in [30,48,49].

The variations in pressure along the 1- and 4-eV iso-
therms are rather similar, and we displayed the results with
the density on a logarithmic and linear scales to facilitate the
comparison between the different calculations. Figure 3
shows that for both isotherms, the calculations using the 3e
and Se pseudopotentials are in good agreement at the lowest
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density. As the density increases, the two calculations depart
with the calculation using the 3e pseudopotential and a cutoff
radius r.=1.6ap gradually giving lower pressures. It is also
interesting to note that the pressure obtained with the 3e
pseudopotential only slowly degrades as the density in-
creases. At p=10 g/cm?, the pressures obtained only depart
by 10%. We further recall that for this potential, there is an
overlap of the “pseudoization” spheres for densities higher
than 7 g/cm’.

Figure 3 shows that the 5e pseudopotential simulations
tend to the TFMD results as the density increases. Further-
more, we note that the small cutoff radius and the inclusion
of the ls orbital allows us to push the ab initio simulations
well into the semiclassical regime. Figure 3 also shows that
there is a significant density region where the two methods
overlap. For these two boron isotherms, we find that the
TFMD simulation results can be considered as accurate for
densities higher than 20 g/cm?. Above this density, the dif-
ference in pressure between the two models is less than 10%.
We also point out that for densities higher than 20 g/cm?, TF
average atom calculations such as presented in the preceding
section indicate that the ionization fraction varies from 3 to
4. This further indicates that the 1s orbital can not be treated
as frozen in this density region. The good agreement between
the ab initio and TFMD simulations at these densities further
suggests that the effect of the 1s orbital is properly accounted
for with the 5e pseudopotential developed in this study.

Finally, we point out that the system is strongly coupled
in this regime and the electrons fully degenerated. As shown
in [30], at these conditions the structure is very close to the
one obtained using the one-component plasma (OCP) model
[31] which is known to freeze at a coupling parameter
I’'=172. Considering that the 2s and 2p orbitals are ionized,
Z'=3, the ion-ion coupling constant is estimated to be
around I'=200 at a density of 20 g/cm® and T=1 eV. In-
deed, we find that both the ab initio and TFMD simulations
indicate that the system is no longer liquid and crystallizes
for densities above 20 g/ cm’. We further note that, in con-
trast, the system stays in a liquid state along the 4-eV iso-
therm and for the density range explored here. Using an ion-
ization fraction of Z"=3.5, the coupling constant is estimated
at around 144 for a density of 100 g/cm® and a temperature
of 4 eV. Finally, the good agreement between the ab initio
and TFMD calculations further suggests that the semiclassi-
cal approximation can be considered as valid for density be-
yond 20 g/cm® and this whether the system crystallizes or
stays in a liquid state.

SUMMARY

In summary, we developed a Troullier-Martins norm-
conserving pseudopotential for boron where all the electrons
are treated as active. We first find that the angular compo-
nents of the pseudopotential cannot be limited to occupied
atomic orbitals to be valid at high densities. Despite the very
large plane-wave cutoff needed to performed the calcula-
tions, we further show that ab initio molecular dynamics
simulations using such a potential are practical well into the
semiclassical regime where simpler methods such as the
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Thomas-Fermi MD approach can be used. This allows us to
establish, for the case of boron plasmas, that the TFMD ap-
proach leads to satisfactory dynamical properties for densi-
ties higher than about 10 times the normal densities.
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